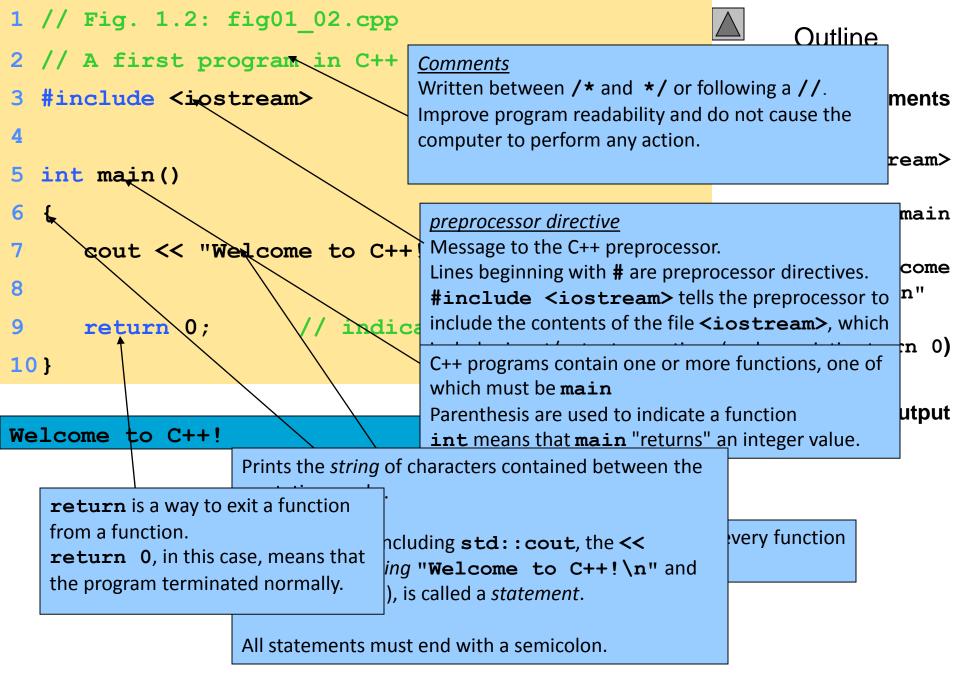
CHAPTER 1.2 INTRODUCTION TO C++ PROGRAMMING

Outline


- 1. Introduction to C++ Programming
- 2. Comment
- 3. Variables and Constants
- 4. Basic C++ Data Types
- 5. Simple Program: Printing a Line of Text
- 6. Simple Program: Adding Two Integers
- 7. a Simple Program: Calculating the area of a Circle

1. Introduction to C++ Programming

- C++ language
 - Facilitates a structured and disciplined approach to computer program design
- Following are several examples
 - The examples illustrate many important features of C++
 - Each example is analyzed one statement at a time.

2. Comment

- Message to everyone who reads source program and is used to document source code.
- Makes the program more readable and eye catching.
- Non executable statement in the C++.
- Always neglected by compiler.
- Can be written anywhere and any number of times.
- Use as many comments as possible in C++ program.

2. Comment

Types of comment

- 1. Single Line Comment
- •starts with "//" symbol.
- •Remaining line after "//" symbol is ignored by browser.
- •End of Line is considered as End of the comment.
- 2. Multiple Line Comment (Block Comment)
- •starts with "/*" symbol.
- •ends with "*/" symbol.

2. Comment

Example

```
/* this program calculate the sum of
  two numbers */
#include<iostream> // header file
using namespace std;
الدالة الرئيسية // الدالة الرئيسية //
   int x, y, sum; // declaration part
/* read the two numbers */
   cin >> x >> y;
// calculate the sum
   sum = x + y;
// print the result
   cout << sum;
return 0;
```

contos

3. Variables and Constants Variables

- Variables are memory location in computer's memory to store data.
- Each variable should be given a unique name called identifier, to indicate the memory location in addition to a data type.
- Variable names are just the symbolic representation of a memory location.
- Variable value can be changed during program execution

Variables Declaration

variable_type variable_name;

```
Example: int a; - Declares a variable named a of type int int a, b, c; - Declares three variables, each of type int int a; float b;
```


Constants

- Constant is the term that has a unique value and can't be changed during the program execution.
- Declaration:
- 1. #define constant_name constant_value

Example: #define PI 3.14

2. const constant_type constant_name = constant_value;

Example: const float PI = 3.14;

Variables and Constants Names

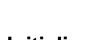
- Can be composed of letters (both uppercase and lowercase letters), digits and underscore '_' only.
- Must begin with a letter or underscore '_'.
- Don't contain space or special character:

• Can't be one of the reserved words (they are used by the compiler so they are not available for re-definition or overloading.)

Reserved Words Examples

int	float	double	char
string	short	long	signed
for	while	if	switch
break	default	do	else
case	return	sizeof	static
continue	goto	true	false
const	void	private	struct
class	cin	cout	new

Reserved Words Examples


 Which of the following variable names are valid/not valid and why if not?

Name	Valid or not	Name	Valid or not
area		10rate	
shoubra_faculty		Shoubra faculty	
w234		W#d	
Ahmed		1233	
A3		Cin	
A_3		Shoubra-faculty	
temp		int	


```
1 // Fig. 4.7: fig04 07.cpp
2 // A const object must be initialized
  int main()
6
     const int x;
                    // Error: x must be
                       Notice that const variables must be
                       initialized because they cannot be modified
     x = 7;
                       later.
10
     return 0;
11 }
Fig04 07.cpp:
Error E2304 Fig04 07.cpp 6: Constant variable
'x' must be
   initialized in function main()
Error E2024 Fig04 07.cpp 8: Cannot modify a
const object in
   function main()
*** 2 errors in Compile ***
```

<u>Outline</u>

- 1. Initialize const variable
- 2. Attempt to modify variable

Program Output

4. Basic C++ Data Types

Туре	Keyword
Integer	short - int - long
Real	float - double - long double
Character	char
String	string
Boolean	bool

4. Basic C++ Data Types

• **Real:** hold numbers that have fractional part with different levels of precision, depending on which of the three floating-point types is used.

Example: float PI = 3.14;

- Character: hold a single character such as 'a', 'A' and '\$'. Example: char ch = 'a';
- **String:** store sequences of characters, such as words or sentences.

Example: string mystring = "This is a string";

• Boolean: hold a Boolean value. It may be assigned an integer value 1 (true) or a value 0 (false).

Example: bool status;

4. Basic C++ Data Types

typedef Declarations

• You can rename an existing type using typedef.

```
typedef type freshname;
```

• For example, this tells the compiler that number is another name for int:

```
typedef int number;
```

 Therefore, the following declaration is perfectly legal and creates an integer variable called distance: number distance;

5. a Simple Program:

Printing a Line of Text

- std::cout
 - Standard output stream object
 - "Connected" to the screen
 - > std:: specifies the "namespace" which cout belongs to
 - **std::** can be removed through the use of **using** statements
- <<
 - > Stream insertion operator
 - ➤ Value to the right of the operator (right operand) inserted into output stream (which is connected to the screen)
 - > std::cout << "Welcome to C++!\n";</pre>
- \
 - Escape character
 - Indicates that a "special" character is to be output

5. a Simple Program:

Printing a Line of Text

Escape Sequence	Description
\n	Newline. Position the screen cursor to the beginning of the next line.
\t	Horizontal tab. Move the screen cursor to the next tab stop.


```
1 // Fig. 1.4: fig01 04.cpp
2 // Printing a line with multiple statements
3 #include <iostream>
5 int main()
      cout << "Welcome ";</pre>
      cout << "to C++!\n";
10
      return 0;
                       indicate that program ended
11 }
Welcome to C++!
                    Unless new line ' \n' is specified, the text continues
                    on the same line.
```

Outline

1. Load <iostream>

2. main

2.1 Print "Welcome"

2.2 Print "to C++!"

2.3 newline

2.4 exit (return 0)

Program Output

```
1 // Fig. 1.5: fig01 05.cpp
2 // Printing multiple lines with a single
  #include <iostream>
  int main()
     cout << "Welcome\nto\n\nC++!\n";</pre>
                       indicate that program ended
10}
Welcome
to
C++!
                        Multiple lines can be printed with one
                        statement.
```

Outline

- 1. Load <iostream>
 - 2. main
- 2.1 Print "Welcome"
- - 2.3 Print "to"

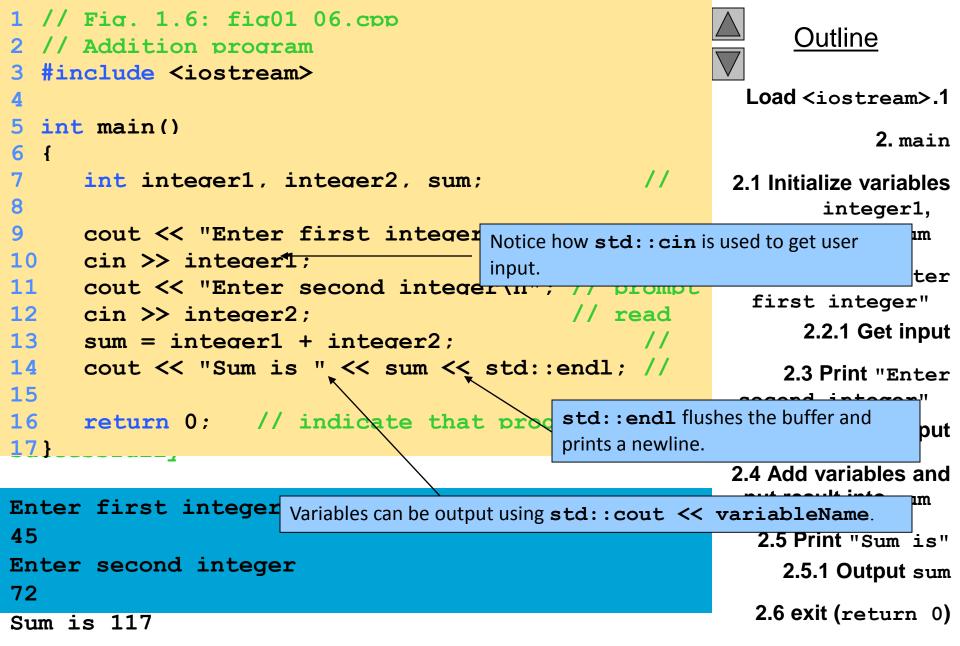
2.4 newline

2.2 newline

- 2.5 newline
- 2.6 Print "C++!"
- 2.7 newline
- 2.8 exit (return 0)
 - **Program Output**

6. a Simple Program:

Adding Two Integers


- (stream extraction operator)
 - ➤ When used with **std::cin**, waits for the user to input a value and stores the value in the variable to the right of the operator
 - ➤ The user types a value, then presses the *Enter* (Return) key to send the data to the computer
 - > Example:

```
int myVariable;
std::cin >> myVariable;
```

- Waits for user input, then stores input in myVariable
- = (assignment operator)
 - > Assigns value to a variable
 - Binary operator (has two operands)
 - > Example:

```
sum = variable1 + variable2;
```


Program Output

23

7. a Simple Program:

Calculating the area of a Circle

```
# include <iostream>
# define PI 3.14
using namespace std;
int main ()
{ /* This program asks the user to enter a radius then calculate the
area */
float radius, Area;
cout<< " Please enter a radius: ";
cin>> radius;
Area = PI * radius * radius ;
cout<< "The area of the circle is " << Area;
return 0;
Write a program to calculate the volume of a sphere.
```

